Real-Time Energy Management Strategy Based on Driving Conditions Using a Feature Fusion Extreme Learning Machine

نویسندگان

چکیده

To address the problem that a single energy management strategy cannot adapt to complex driving conditions, in this paper, real-time for different conditions is proposed improve fuel economy. First, order accuracy and stability of condition identifier, feature fusion extreme learning machine (FFELM) used identification. Secondly, equivalent consumption minimization (ECMS) offline optimization conducted types cycles, effect cycle type distance on under result analyzed. A combining type, distance, optimal power allocation factor proposed. demonstrate effectiveness strategy, combined cycles were testing. The simulation results show can by 10.21% compared conventional CD-CS. economy be improved 2.5% ECMS with less computational burden. Thus, it demonstrated effectively adapted shows better economic performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...

متن کامل

Vehicle detection in driving simulation using extreme learning machine

Automatically driving based on computer vision has attracted more and more attentions from both research and industrial fields. It has two main challenges, high road and vehicle detection accuracy and real-time performance. To study the two problems, we developed a driving simulation platform in a virtual scene. In this paper, as the first step of final solution, the Extreme Learning Machine (E...

متن کامل

Discrete-time hypersonic flight control based on extreme learning machine

This paper describes the neural controller design for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV). The dynamics are transformed into the strict-feedback form. Considering the uncertainty, the neural controller is constructed based on the single-hidden layer feedforward network (SLFN). The hidden node parameters are modified using extreme learning machine (ELM) by assi...

متن کامل

Clustering in extreme learning machine feature space

Extreme learning machine (ELM), used for the “generalized” single-hidden-layer feedforward networks (SLFNs), is a unified learning platform that can use a widespread type of feature mappings. In theory, ELM can approximate any target continuous function and classify any disjoint regions; in application, many experiment results have already demonstrated the good performance of ELM. In view of th...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2022

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en15124353